Răspuns :
1. A = [2³ ·3²]^(n+1) + 3^(2n+1) ·2^(3n+2) + 3^2n ·2^3n ·2·3 =
= 2^(3n+3) ·3^(2n+2) + 3^(2n+1) ·2^(3n+2) + 3^(2n+1) ·2^(3n+1) =
= 2^(3n+1) ·3^(2n+1) ·[2² ·3 + 2·1 + 1·1] = 2^(3n+1) ·3^(2n+1) ·15 = divizibil cu 15
2. B = 7^(n+2) ·5^(n+1) ·3^(n+1) - 3·5·7² = 3·5·7² ·[3^n ·5^n ·7^n - 1] ⇒
⇒ B = divizibil = 3·5·7² = 735
deoarece 3^n ·5^n ·7^n = 105^n = nr. impar ⇒ 105^n - 1 = nr. par , adica, divizibil cu 2 ⇒ B = divizibil cu 2 ·735 = 1470
= 2^(3n+3) ·3^(2n+2) + 3^(2n+1) ·2^(3n+2) + 3^(2n+1) ·2^(3n+1) =
= 2^(3n+1) ·3^(2n+1) ·[2² ·3 + 2·1 + 1·1] = 2^(3n+1) ·3^(2n+1) ·15 = divizibil cu 15
2. B = 7^(n+2) ·5^(n+1) ·3^(n+1) - 3·5·7² = 3·5·7² ·[3^n ·5^n ·7^n - 1] ⇒
⇒ B = divizibil = 3·5·7² = 735
deoarece 3^n ·5^n ·7^n = 105^n = nr. impar ⇒ 105^n - 1 = nr. par , adica, divizibil cu 2 ⇒ B = divizibil cu 2 ·735 = 1470
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!