3√6/(3√2+2√3) - 5√6/(4√3+3√2) - √6/(5√3-6√2) =
=3√6(3√2-2√3)/(3√2+2√3)(3√2-2√3) - 5√6(4√3-3√2)/(4√3+3√2)(4√3-3√2) - -√6(5√3+6√2)/(5√3-6√2)(5√3+6√2) =
=(9√12-6√18)/(18-12) - (20√18-15√12)/(48-18) -(5√18+6√12)/(75-72) =
=(18√3-18√2)/6 - (60√2-30√3)/30 -(15√2+12√3)/3 =
=3√3-3√2 - 2√2+√3 -5√2-4√3 =
=-3√2 - 2√2 -5√2 =
=-10√2
2
AB=BC=AC=2
notam O originea
AC²=OC²+AO²
2²=OC²+1²
OC²=4-1=3
OC=+√3
OC=-√3
C poate avea coordonatele (0,√3) sau (0, -√3)