👤

Repede va rog! e tema pentru luni!

Repede Va Rog E Tema Pentru Luni class=

Răspuns :

a) [tex] \frac{- 1235}{197})^0[/tex] = 1
b) [tex]( \frac{-36}{47} )^1[/tex] = [tex] \frac{-36}{47} [/tex]
c) [tex] \frac{-1997}{1997}^{1997} [/tex] = -1
d) [tex] \frac{-17}{34}^4 [/tex] = [tex] -0,5^{4} [/tex] = 0,0625
e) [tex]( -4\frac{32}{124} )^{1997}[/tex] = 0
f) [tex]0^{2015} = 0[/tex]
g)  [tex] (-\frac{23}{23 }) ^{-1} = -1^{-1} = -1[/tex]
h)[tex] (-1,5)^{-2} = ( \frac{1}{1,5^2})= \frac{1}{-2,25} [/tex]
i) [tex] [0,(3)]^{4} [/tex] = [tex]( \frac{1}{3}) ^{4} [/tex]
j) [tex]( -1\frac{2}{3} ) ^{-2} = ( -\frac{3}{3} ) ^{-2}= ( - \frac{3}{3 ^2})=( -\frac{3}{9}) [/tex]
k) [tex][-1,1(6)] ^{-3} = ( -\frac{105}{90 ^{2} }) =( \frac{105}{8100} )[/tex]
a) 1^0=1, formula a^0=1; b) -36/47, formula a¹=a. c)-1^1997=-1, formula a¹=a, (-1)ⁿ=1, (-1)^ⁿ+¹=-1 (adica daca nr negativ, nu numai -1daca are exponent par rezultatul va fi pozitiv, daca exponent impar atunci nr primit va fi cu minus . d)( -1/2)⁴=1/16. e). (-528/124)^1997= (-4 intreg 4/ 31)^1997= (128/31)^1997= 128^1997/31^1997, formula (a/b)ⁿ=aⁿ/bⁿ. f) 0, formula 0ⁿ=0. g)(-1)^-¹= 1/(-1)¹=-1, formula a^-ⁿ=1/aⁿ. h)1/(-1,5)²=1/2,25=0,(4). i) [0,(3)]⁴=(3/9)⁴=(1/3)⁴=1/81. j)1/(-5/3)²=1/(25/9)=9/25, formula (a/b)/(c/d)=(a/b)*(d/c) adica inmult cu inversul impartitorului. k) [-1,1(6)]^-³= 1/(105/90)³= 1/(7/6)³= 6³/7³= 216/343.