👤

Va rog .. Asemanator subiectului II primesc la teza :((( Si vreau sa inteleg si eu .. va rooog <333 Am nevoie de rezolvarea exerciilor 1,2,3.. 

Va Rog Asemanator Subiectului II Primesc La Teza Si Vreau Sa Inteleg Si Eu Va Rooog Lt333 Am Nevoie De Rezolvarea Exerciilor 123 class=

Răspuns :

Subiectul II

[tex]\displaystyle 1a) \\ \left( \sqrt{2+ \sqrt{3} }- \sqrt{2- \sqrt{3} }\right)^2 + m \sqrt{3}=-2 \\ \left( \sqrt{2+ \sqrt{3} }\right)^2 -2 \sqrt{2+ \sqrt{3} }\times \sqrt{2- \sqrt{3} } +\left( \sqrt{2-\sqrt{3} }\right)^2 +m \sqrt{3}=-2\\ 2+ \sqrt{3} -2 \sqrt{(2+ \sqrt{3}) \times (2- \sqrt{3}) } + 2-\sqrt{3} +m \sqrt{3}=-2\\ 2+ \sqrt{3} + 2-\sqrt{3} -2 \sqrt{(2+ \sqrt{3}) \times (2- \sqrt{3}) } +m \sqrt{3}=-2\\ 2+2 - 2\sqrt{4- 3} +m \sqrt{3}=-2 [/tex]

[tex]\displaystyle 4 - 2\sqrt{1} +m \sqrt{3}=-2 \\ 2+m \sqrt{3}=-2 \\ m \sqrt{3}=-2-2 \\m \sqrt{3}=-4 \\ m = \frac{-4}{\sqrt{3}} = \boxed{- \frac{4\sqrt{3}}{3} } [/tex]


[tex]\displaystyle 1b) \\ 9x^2 + 4y^2-12x-4y+5=0 \\ 9x^2 + 4y^2-12x-4y+4+1=0 \\ (9x^2 -12x+4)+( 4y^2-4y+1) =0\\ ((3x)^2 -2\cdot 3x\cdot 2+2^2)+( (2y)^2-2\cdot 2y\cdot 1 + 1^2) =0\\ (3x -2)^2+( 2y-1)^2 =0 ~~\Longrightarrow~~ (3x -2)^2=0~~si~~ ( 2y-1)^2 =0\\ \boxed{x = \frac{2}{3}} ~~~radacina ~dubla \\ \boxed{y= \frac{1}{2} } ~~~radacina ~dubla[/tex]


[tex]1c) ~~~ a\ \textless \ 1 \\ |a-1|-|a^2-1|+|3a-3| = \\ =1-a - (1-a^2) + 3-3a = \\ =1-a - 1+a^2 + 3-3a =\\ =\boxed{a^2 -4a+3} = \\ =a^2 -a-3a+3 = \\ =a(a-1)-3(a-1) = \\ = \boxed{(a-1)(a-3)} [/tex]


[tex]\displaystyle 2a) \\ E(x)=\left( \frac{x-1}{x+2} + \frac{x+1}{2-x}+ \frac{2+7x}{x^2-4} \right)\cdot \left( x+1 +\frac{3-6x}{x+1} \right)= \\ \\ =\left( \frac{x-1}{x+2} - \frac{x+1}{x-2}+ \frac{2+7x}{x^2-4} \right)\cdot \left(\frac{(x+1)^2+ 3-6x}{x+1} \right)= \\ \\ = \frac{(x-1)(x-2)-(x+1)(x+2)+2+7x}{x^2-4} \cdot \frac{x^2 +2x+1+3-6x }{x+1}= \\ \\ =\frac{x^2-3x+2-(x^2+3x+2)+2+7x}{x^2-4} \cdot \frac{x^2 -4x+4}{x+1}= [/tex]


[tex]\displaystyle =\frac{x^2-3x+2-x^2-3x-2+2+7x}{x^2-4} \cdot \frac{(x-2)^2}{x+1}= \\ \\ =\frac{x^2-x^2 +7x -3x -3x +2 -2+2}{x^2-4} \cdot \frac{(x-2)^2}{x+1}= \\ \\ =\frac{x+2}{(x+2)(x-2)} \cdot \frac{(x-2)(x-2)}{x+1}= \boxed{\frac{x-2}{x+1}} [/tex]


[tex]\displaystyle 2b) \\ \frac{x-2}{x+1} = \frac{x+1-3}{x+1}=\frac{x+1}{x+1}-\frac{3}{x+1} \\ \\ D_3 = \{-3;~-1;~1;~3\} \\ x+1=-3 ~~\Longrightarrow~~x_1=-4 \\ x+1=-1 ~~\Longrightarrow~~x_2=-2 \\ x+1= 1 ~~\Longrightarrow~~x_3=0 \\ x+1=3 ~~\Longrightarrow~~x_4=2 [/tex]



[tex]3a) \\ \text{AD si AF sunt doua drepte incluse in planul (DAF)} \\ AB \underline{~|~} AD ~~si~~ AB \underline{~|~} AF \\ \text{Daca o dreapta este perpendiculara pe doua drepte din plan, } \\ \text{atunci dreapta este perpendiculara pe plan} \\ =\ \textgreater \ AB \underline{~|~} (DAF) \\ EF || AB \\ =\ \textgreater \ EF \underline{~|~} (DAF) [/tex]


[tex]3b) \\ EF || AB \\ CD || AB \\ =\ \textgreater \ ~~EF || BC =\ \textgreater \ ~~\text{Dreptele EF si CD sunt coplanare} \\ =\ \textgreater \ ~~\text{Punctele E, F, C, D sunt coplanare} \\ \\ 3c)\\ \text{EF = CD si }EF || CD \\ \text{DF= CE si }DF || CE \\ EF \underline{~|~} FD ~~si~~ EF \underline{~|~} CE\\ =\ \textgreater \ EFCD = dreptunghi \\ EF=CD = AB = 15~cm \\ DF = CE = \sqrt{20^2 + 10^2}= \sqrt{400 + 100}= \sqrt{500}=10 \sqrt{5}~cm \\ A = 15 \times 10 \sqrt{5} = 150 \sqrt{5}~cm^2 ~P=2(15+10 \sqrt{5})cm[/tex]


[tex]3d) \\ \text{Alegem un punct pe AB din care ducem o perpendiculara pe (CDF)} \\ \text{Alegem punctul A, din care perpendiculara pe (CDF), cade pe DF} \\ \text{Aceasta este inaltimea h a } \Delta ADF \text{ dusa din A pe DF} \\ \\ \displaystyle h = \frac{AD \times AF}{DF} = \frac{20 \times 10}{10 \sqrt{5}} = \frac{20\sqrt{5} }{ 5}=4\sqrt{5}~cm[/tex]