👤

demonstrati ca numarul[tex]4^{2n} + 2^{2n+1} +1[/tex] n∈N ,este patrat perfect.

Răspuns :

[tex]4^{2n} [/tex]+[tex] 2^{2n+1} [/tex]+1=([tex] 2^{n} [/tex])²+2*[tex] 2^{n} [/tex]*1+1²=([tex]2^{n} [/tex]+1)²-patrat perfect


am aplicat a²+2ab+b²=(a+b)²