Răspuns :
1.
AD=√[(3+1)²+(5-3)²]=√(16+4)=√20=2√5
AB=√[(-3+1)²+(-1-3)²]=√(4+16)=√20=2√5
BC=√[(1+3)²+(1+1)²]=√(16+4)=√20=2√5
AB=√[(3-1)²+(5-1)²]=√(4+16)=√20=2√5
calculam panta dreptelor AD si BC :
mAD= (5-3)/(3+1)=1/2
mBC=(1+1)/(1+3)=1/2 rezulta ca ADII BC
rezulta ca este romb
2.
A(2,2) ; B(4,3) ; C(5,1)
A'(-2,2) ; B(-4,3) ; C(-5,1)
AB=√[(4-2)²+(3-2)²]=√(4+1)=√5
AC=√[(5-2)²+(1-2)²]=√(9+1)=√10
BC=√[(5-4)²+(1-3)²]=√(1+4)=√5
A'B'=√[(-4+2)²+(3-2)²]=√(4+1)=√5
A'C'=√[(-5+2)²+(1-2)²]=√(9+1)=√10
B'C'=√[(-5+4)²+(1-3)²]=√(1+4)=√5
rezulta ca ΔABC=ΔA'B'C'.
AD=√[(3+1)²+(5-3)²]=√(16+4)=√20=2√5
AB=√[(-3+1)²+(-1-3)²]=√(4+16)=√20=2√5
BC=√[(1+3)²+(1+1)²]=√(16+4)=√20=2√5
AB=√[(3-1)²+(5-1)²]=√(4+16)=√20=2√5
calculam panta dreptelor AD si BC :
mAD= (5-3)/(3+1)=1/2
mBC=(1+1)/(1+3)=1/2 rezulta ca ADII BC
rezulta ca este romb
2.
A(2,2) ; B(4,3) ; C(5,1)
A'(-2,2) ; B(-4,3) ; C(-5,1)
AB=√[(4-2)²+(3-2)²]=√(4+1)=√5
AC=√[(5-2)²+(1-2)²]=√(9+1)=√10
BC=√[(5-4)²+(1-3)²]=√(1+4)=√5
A'B'=√[(-4+2)²+(3-2)²]=√(4+1)=√5
A'C'=√[(-5+2)²+(1-2)²]=√(9+1)=√10
B'C'=√[(-5+4)²+(1-3)²]=√(1+4)=√5
rezulta ca ΔABC=ΔA'B'C'.
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și vă încurajăm să ne salvați în lista de favorite!